Projective production of path-entangled photon number states with linear optics
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We propose a method for preparing path entangled states with a definite photon number larger
than two that relies on projective measurements. In contrast with the previously known schemes,
our method uses linear optics elements only. Specifically, we exhibit a way of generating four-photon
path-entangled states of the form |4, 0)+]0, 4) requiring four beam splitters and two detectors. These
states are of major interest as a resource for quantum interferometric optical lithography as well as

for quantum interferometric sensors.

PACS numbers: 42.50.-p, 03.67.-a

Quantum entanglement plays a central role in quan-
tum communication and computation. It also provides
a significant improvement in frequency standards as well
as in the performance of interferometric sensors [1,2]. In
the latter context, it has been shown that the Heisenberg
limit of phase sensitivity of a Mach-Zehnder interferom-
eter can be reached by using maximally entangled states
with a definite number of photons N, that is, states of
the form

|N,0)a,8 +10,N)a,B (1)

with A and B denoting the two arms of the interfer-
ometer. These states, also called path-entangled photon
number states, give rise to a phase sensitivity of order
1/N, whereas using coherent light in the interferometer
gives a corresponding sensitivity of order 1/ VN, with N
being the average number of photons. Another potential
application of quantum entanglement is photolithogra-
phy. Indeed, it has been shown recently that the Rayleigh
diffraction limit in optical lithography can be beaten by
the use of path-entangled photon number states [3]. In
order to obtain the N-fold resolution enhancement with
quantum interferometric optical lithography, one needs
again to create an N-photon path-entangled state of the
form (1), where A and B are two distinct paths. Due
to interference of the paths one obtains an intensity pat-
tern at the lithographic surface which is proportional to
cos N, where o parametrizes the position on the sur-
face. An (incoherent) superposition of these states with
varying N and suitable phase shifts then yields a Fourier
series up to a constant [4]. Finding methods for generat-
ing these path-entangled states has been a longstanding
endeavour in quantum optics. Unfortunately, with the
notable exception of N = 2, the optical generation of
these states has been known to require a large nonlinear
interaction, typically a Kerr element, which makes any
physical implementation very hard [5-7].

Recently, however, several methods have been pro-
posed for the realization of probabilistic quantum logic
gates that make use of linear optics and projective mea-
surements [8-10], namely by measuring some part of the

system while the rest of it is projected onto a desired
state (also called state reduction). Since the state is
obtained conditioned on a measurement outcome, this
method only works probabilistically. In this letter, we in-
vestigate a new technique for generating path-entangled
photon number states based on this new paradigm. We
suggest several linear optics schemes based on projective
measurements for the preparation of four-photon path-
entangled states. Finally we discuss the feasibility of
these schemes by investigating the consequence of ineffi-
cient detectors on the state preparation process.
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FIG. 1. Four possibilities obtained by sending a |1, 1) state
through a beam splitter. The diagrams (c) and (d) lead to
the same final state, and interfere destructively. (c) trans-
mission-transmission (:)(1) = —1; (d) refection-reflection:

(-1)(-1)=1.

It is well known that two-photon path-entangled states
(N = 2) can be created using a Hong-Ou-Mandel inter-
ferometer, where a photon pair from a parametric down-
converter impinge onto a 50:50 beam splitter [11]. The
beam splitter operation on the product state |1,1)4,B
yields the path-entangled state |2,0)4 5 + |0,2)ar 5.
The probability amplitude for having |1,1) 4/ g at the
output of the beam splitter vanishes, which can be un-
derstood by a simple diagrammatic analysis (see Fig. 1).
In our convention, the reflected mode acquires a phase
—1 while the transmitted mode acquires a phase of ¢ (this
must be consistent with the reciprocity requirement), so
that the two possible ways of having a state |1,1) inter-
fere destructively. Interestingly enough, it can be proven
that a simple beam splitter is not sufficient for the pro-
duction of path-entangled states with a photon number



larger than two [12]. For N > 2, common knowledge
is that nonlinear optical elements become necessary. By
contrast, we will show here that the recourse to nonlinear
elements can actually be avoided if some photo-detectors
are added to the scheme. The desired path-entangled
state is then obtained conditioned on the measurement
outcome.

FIG. 2. Mach-Zehnder interferometer configuration with
two additional beam splitters in the lower and upper arms,
which direct the reflected beams to photodetectors. The
measurement allows the projective generation of the states
[2,0) + |0, 2) and [4,0) + |0, 4).

Before considering the case of N = 4, it is instructive
to exhibit first the generation of the state |2,0)4 p +
|0,2) 4, g using projective measurements instead of a
simple beam splitter. Let us consider a Mach-Zehnder
interferometer with two additional beam splitters, each
of them being followed by a detector (see Fig. 2). In such
a configuration, one can post-select the desired state on
a two-fold detector coincidence. Formally, we are dealing
with a four-port optical device wich may be represented
by expressing the output mode operators &', ', ¢, and d'
as a function of the input mode operators a, 13, ¢, and d
[2]. For the transformation of a single beam splitter (say
the first one, see Fig. 2), we use the convention

a1 = (—a+1ib)/V2
by = (ia — b)/V2 (2)
Combining the transformations for the first, last, and the
two intermediate beam splitters in the lower and upper
arms, we get the overall transformation
& =b/V2+ (¢ —id)/2
b =a/V2+(d—id)/2
& = (a—1ib)/2+ie/V2
d = (b—ia)/2+id/V2 (3)
(Note that we neglect the phase induced by the mir-
rors and the optical paths.) For a given input state,
one can obtain the output state simply by expressing
the input mode operators in terms of the output modes,
that is, by inverting Eq. (3). Suppose the input state
is [2,2) 4,8 = $(@")2(b")2|0). Then, the term of order
¢d' in the expansion of (a1)2(bt)? can be shown to be

(a2 + b'2) so that the total output state after post-
selection can be written as

127 O)A’,B’ + IO') 2)A',B’ ) (4)

where we have only shown the term that corresponds to
the measurement of one photon at each detector. Thus, if
one and only one photon is detected at each detector, one
obtains the envisioned two-photon path-entangled output
state. The probability of this event is 1/186.

The reason why this projective method works can be
understood as follows. The state after passing through
the first beam splitter becomes a linear superposition of
the states |4,0), |2,2), and |0,4). Again, the states |3,1)
and |1,3) do not appear for the same reason as the van-
ishing of the state |1)4]1); when the input is [1)4|1)5
(see, Fig 3). Since the detection of one photon at each
detector requires at least one photon in both the upper
and lower arms of the interferometer, the |4,0) and |0, 4)
states cannot contribute to such events. Consequently,
only the |2,2) term is left, which yields |1,1) since one
photon is detected in each arm. This last state is thus
found at the input ports of the last beam splitter, which
results in expected state |2,0) + |0, 2).
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FIG. 3. Two possible ways of making a |3,1) (and |1, 3))
state from an input |2, 2) state passing through a beam split-
ter. The two diagrams interfere destructively just as in Fig. 1.

We can now use this to proceed to the generation of
the [4,0) + 10,4) state. The key reason why projective
measurement is useful in the above scheme is that it en-
ables us to conditionally suppress the extreme compo-
nents |4,0) and |0,4) in the interferometer, while leav-
ing the middle component |2,2) unchanged. More gen-
erally, we will see that the generation of path-entangled
states with N > 2 requires eliminating (or reducing the
amplitude of) the extreme components with respect to
the central ones. Suppose we want to produce the state
|4,0) + |0,4). Then, what must be the input state of the
last beam splitter? A simple matrix inversion shows that
one needs an input operator as [(af)*—6(at)2(bt)2+(b1)4].
On the other hand, for the output state |4,0) — |0, 4), the
required input operator is [(a')3(b') — (at)(bt)?]. (Since
it has fewer terms, we will focus for the moment on pro-
ducing |4,0) — |4,0).) The required input state of the
last beam splitter should now be compared to the out-



put state of the first beam splitter. Taking |3,3) as the
input state, the first beam splitter transforms this into a
linear superposition of |6,0), |4,2), |2,4), and |0, 6) such
that

)° +3(ah)*(8")?* + 3(ah)*(")* + (b7)° (5)

After passing through the intermediate beam splitters
and if one photon is detected at each detector (one click
at both detectors), the corresponding quantum state is
then projected on to |3,1) + }1,3). Indeed, since the
states |6,0) or |0,6) cannot yields a click at both de-
tectors, they are eliminated in this projective process.
The |4,2) and |2,4) states, on the other hand, lose one
photon in each arm of the interferometer, and are there-
fore reduced to |3,1) and |1, 3), respectively. Thus, just
before the last beam splitters, we have |3,1) + |1, 3).
In order to match the relative phase of the state (for
[4,0) — [0,4), we need |3,1) — |1,3)), it is sufficient to
use a phase shifter (see Fig. 3). With a 7/2 phase shift
in the lower arm of the interferometer, the state be-
fore the intermediate beam splitters, is given as |6,0) +
3ei27/2|4, 2) + 3¢%47/2|2, 4) + €¥7/2)0), 6), which is then re-
duced to |3,1) — |1, 3). Consequently after the last beam
splitter, we get |4,0) — |0,4). The probability to obtain
this a state as 3/64 =~ 0.05. Any |2N + 1,2N + 1) input
state with detection of 2N — 1 photons at each detector
yields the output state |4,0) — |0, 4) in this configuration,
but with smaller probabilities as N increases.

There is another way to produce |4, 0) + |0, 4), exploit-
ing the previously unused input ports. Consider the in-
put state |2,2) at modes A and B, and let |2,0) + |0,2)
be the incoming state at the other two input ports (¢, d
modes in Fig. 2). Again conditioned on a two-fold single-
photon detection coincidence this protocol yields the
state |4,0) — |0,4) with probability 3/64.

So far, our schemes for generation of |N,0) + |0, N)
state (N = 2,4) entirely rely on an a priori symmetric
|M, M) input state. We now develop a scheme in which
we do not necessarily need such a symmetric product
state. Suppose an input state |3,0)4,5. The first beam
spliter (in Fig. 3) yields

413 = L [at® _ 3iat2ht _ 34512 4 4Bt3
a'” = —la' — 3ia’b" — 3atb' +ib'°|. 6
ol L ®

Now at the intermediate BS let us feed with |1,0)¢cp +
|0, 1Yo p state (which is an one-photon state after |1) state
passing through a BS). Then, we can write

3,0)4,8,(11,0)cp + 10, 1)cp)
=13,1)4,010,0)B,p + [3,0) 4,¢/0, )50 (7)
The first term in the right hand side does not give a click

at the lower detector, and the second term contains (af-
ter the imtermediate BS) |2, 1) 4,¢]0, 1) B, state with a

phase factor of (—1)(—3/4). Detection of one photon at
each detector yields |2,0)4,p5,. Similarly, for |0,3) 4,5,
we have |0, 2) 4,5, with phase factor (—2)(3i/4).

On the other hand, for |2,1) 4, p, state, it can be rear-
ranged as

|271>A10|1a0)BlD + |2’0)A10|171)31D' (8)

As depicted in Fig. 1, {1, 1) g, p state in the second term
can not yield only one click at the lower detector, and
the first term yields the |2,0)4,B,|1,1)c/p: state with
phase factor of (3i)(—1/4). Similarly, from |1,2)4,5,
state we have |0,2)4,8,|1,1)c'p' state with phase fac-
tor of 3(—i/4).

Including the overall phase factor 1/+/8 in Eq. (10), one
photon detection at each detector yields then, project the
final state |2,0) + |0,2), with the probability 3/64.

Note that the desired |2,0) + |0,2) is produced be-
fore the last BS. In order to complete the interferometer
scheme (it is not at all necessary, but is useful for later
discussions), we insert a m/2-phase shifter in the lower
arm just after the first BS. When we do that, we obtain
|2,0) — |0,2) at the interferometer output.

FIG. 4. Four-detector scheme with a Mach-Zehnder inter-
ferometer in order to generate the |4, 0) + |0, 4) state.

Generation of the |2,0) — |0,2) state is also possi-
ble with the four-detector cofiguration with the input
state [5,0) by feeding the first intermediate BS with
[1,0)¢,p, +10,1)¢,p,- We find that the probability of
success is even slightly higher than two-detector scheme
as (5/4)(3/64) =~ 0.06. An interesting extension can be
found in the following way: For the input state |5,0),
if we feed the first intermediate BS with ]2,0)¢,p, +
|0,2)¢,p,, The one photon detection at every four de-
tectors yields the state |3,0) — |0,3). The probability of
success in this case is approximately 5 x 1073, Repeat-
edly, when we prepare the first intermediate BS input
with |3,0)¢, b, +10, 3)c, b, , We can generate |4, 0) —|0,4).
The probability of success in this case is approximately
1073,

What happens when we use realistic detectors? There
are three classes of errors which will affect the outgoing
state. First, the detector might register a photon only
part of the time. The efficiency of the detector is then
given by the probability n? of a succesful detection. Sec-
ondly, it might give a ‘dark’ count when no photon was



actually present. This type of errors is usually taken to
be negligable. Finally, the detector might not be able
to resolve one or more photons. Since the above pro-
tocol relies on 1-, 2- and 3-photon counts, we must use
single-photon resolution detectors.

We can model the detector efficiency as an ideal detec-
tor preceded by a beam splitter with transmission ampli-
tude 5. The photons which are deflected from the detec-
tor represent the loss. When two photons enter the inef-
ficient detector, one of them might be lost, thus yielding
an incorrect. detector outcome. This is particulary im-
portant to our scheme, since we condition the outgoing
state on single-photon detection events. The POVM for
a single-photon detection is therefore given by

By =3 n?(—n?)njin . (9)

When we apply this to the creation of the state
[4,0)q'pr — |0,4)arr, we obtain po Zﬁ,m=2 nmn*(1 —
772)"+m_2p((:,;,m), where n,m are the number of pho-
tons lost in modes ¢ and d, and p{™™  oug
(n,m|payear|n,m)ea. The density matrices p(n m)
which arise due to these imperfect detections again cor-
respond to N-photon path entanglement:

(n,m) plmm)

For a realistic single-photon resolution photo-detector
with efficiency n? = 0.88 [13], the fidelity of the out-
goins state with respect to the intended state |¥) =
|4,0) + |0,4) conditioned on a single-photon detector co-
incidence would be

F = (T|p|T) = 0.64 . (10)

Even though these imperfect detections lead to a
degraded fidelity with respect to the envisioned state
|4,0) —|0,4), we can exploit the POVM’s to create (inco-
herent) superpositions of path-entangled photons. Recall
that the state | N,0)+]0, N) gives rise to a deposition rate
1+4+cos{(N¢) on the substrate. Superposing these patterns
with suitable intensities for different N yields a Fourier
series up to a constant. This is useful for the pseudo-
Fourier method in quantum lithography [4]. Note that
we do not need a coherent superposition of these states
since there is no interference between different photon
number states.
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